Part Number Hot Search : 
003LF UBV45 HA535107 MSM6555B SKD230 ADF04SA PI3B3253 E4C0517S
Product Description
Full Text Search
 

To Download TS4962IJT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TS4962
3W Filter-free Class D Audio Power Amplifier
PRELIMINARY DATA Operating from Vcc=2.4V to 5.5V Standby mode active low Output power: 3W into 4 and 1.75W into 8 with 10% THD+N max and 5V power supply. Output power: 2.3W @5V or 0.75W @ 3.0V into 4 with 1% THD+N max. Output power: 1.4W @5V or 0.45W @ 3.0V into 8 with 1% THD+N max. Adjustable gain via external resistors Low current consumption 2mA @ 3V Efficiency: 88% typ. Signal to noise ratio: 85dB typ. PSRR: 63dB typ. @217Hz with 6dB gain PWM base frequency: 250kHz Low pop & click noise Thermal shutdown protection Available in flip-chip 9 x 300um in lead free*
Pin Connections (top view)
TS4962EIJT
IN+ 1/A1 VDD 4/B1 IN7/C1 GND 2/A2 VDD 5/B2 STBY 8/C2 OUT3/A3 GND 6/B3 OUT+ 9/C3
IN+: positive differential input IN-: negative differential input VDD: analog power supply GND: power supply ground STBY: standby pin (active low) OUT+: positive differential output OUT-: negative differential output
Description
The TS4962 is a differential class-D B.T.L. power amplifier. Able to drive up to 2.3W into a 4 load and 1.4W into a 8 load at 5V. It achieves outstanding efficiency (88%typ.) compared to classical AB-class audio amps. Gain of the device can be controlled via two external gain setting resistors. POP & CLICK reduction circuitry provides low on/off switch noise while allowing the device to start within 5ms.A standby function (active low) allows to lower the current consumption to 10nA typ.
Block Diagram
B1 Vcc C2 Stdby 300k Internal Bias 150k Out+ C3 Output PWM H Bridge 150k Oscillator A3 OutB2
C1 InIn+ A1
+
Applications
Cellular Phone PDA Notebook PC
GND A2 B3
Order Codes
Part Number TS4962IJT TS4962EIJT TS4962EKIJT Temperature Range -40, +85C -40, +85C -40, +85C Package Flip-Chip Lead -Free Flip-Chip Lead Free + Back Coating Packaging Marking A62 A62 A62
Tape & Reel
February 2005
Revision 2
1/22
This product preview information shows the electrical and mechanical performances of a finalized product. However, details could still be modified.
TS4962
Absolute Maximum Ratings
1 Absolute Maximum Ratings
Table 1. Key parameters and their absolute maximum ratings
Symbol VCC Vi Toper Tstg Tj Rthja Pd Supply voltage
2 1
Parameter
Value 6 GND to VCC -40 to + 85 -65 to +150 150
3
Unit V V C C C C/W
4
Input Voltage Operating Free Air Temperature Range Storage Temperature Maximum Junction Temperature Thermal Resistance Junction to Ambient Power Dissipation
200 Internally Limited 2 200 200 GND to VCC 260
ESD Human Body Model ESD Machine Model Latch-up Latch-up Immunity VSTB Standby pin voltage maximum voltage 5 Lead Temperature (soldering, 10sec)
kV V mA V C
1) All voltages values are measured with respect to the ground pin. 2) The magnitude of input signal must never exceed VCC + 0.3V / GND - 0.3V 3) Device is protected in case of over temperature by a thermal shutdown active @ 150C. 4) Exceeding the power derating curves during a long period, involves abnormal operating condition. 5) The magnitude of standby signal must never exceed VCC + 0.3V / GND - 0.3V
Table 2. Operating Conditions
Symbol VCC VIC VSTB RL Rthja Supply Voltage1 Range2
3
Parameter
Value 2.4 to 5.5 0.5 to VCC-0.8 1.4 VSTB VCC GND VSTB 0.4 4
Unit V V V
Common Mode Input Voltage Standby Voltage Input : Device ON Device OFF Load Resistor
4
5
C/W
Thermal Resistance Junction to Ambient
90
1) For VCC from 2.4V to 2.5V, the operating temperature range is reduced to 0C Tamb 70C 2) For VCC from 2.4V to 2.5V, the common mode input range must be set at VCC/2. 3) Without any signal on VSTB , the device will be in standby 4) Minimum current consumption shall be obtained when VSTB = GND. 5) With heat sink surface = 125mm2.
2/22
Application Component Information
TS4962
2 Application Component Information
Component Cs Rin Input Capacitor Functional Description Bypass supply capacitor. To install as close as possible of the TS4962 to minimize high frequency ripple. A 100nF ceramic capacitor should be add to enhance the power supply filtering in high frequency. Input resistor to program the TS4962 differential gain (Gain = 300k/Rin with Rin in k) Thanks to common mode feedback, these input capacitors are optional. However, we can add then to form with Rin a 1st order high pass filter with -3dB cut-off frequency = 1/(2**Rin*Cin)
Figure 1.
Typical application
Vcc Vcc
B1 Vcc C2 Stdby 300k Internal Bias 150k
B2
In+
Cs 1u
Out+ C3 Output PWM H Bridge
GND
GND GND
+
Rin
C1
Differential Input InA1 Rin
InIn+ + 150k Oscillator
-
SPEAKER A3 Out-
Input capacitors are optional
GND
TS4962 GND A2 B3
GND
Vcc Vcc
B1 Vcc C2 Stdby 300k Internal Bias 150k
B2
In+
Cs 1u 4 Ohms LC Output Filter
Out+ C3 Output PWM H Bridge
GND
GND GND
15H
+
Rin
C1 InIn+
Differential Input InA1 Rin
+
150k Oscillator
1F A3 15H
Load
Input capacitors are optional
GND
Out-
GND TS4962 A2 B3
GND
30H
0.5F 30H
8 Ohms LC Output Filter
3/22
TS4962
Electrical Characteristics
3 Electrical Characteristics
Table 3. VCC = +5V, GND = 0V, VICM = 2.5V, Tamb = 25C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Supply Current No input signal, no load Standby Current 1 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8 Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4 THD = 10% Max, f = 1kHz, RL = 4 THD = 1% Max, f = 1kHz, RL = 8 THD = 10% Max, f = 1kHz, RL = 8 Total Harmonic Distortion + Noise Po = 900 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8 + 15H, BW < 30kHz Po = 1WRMS, G = 6dB, f = 1kHz, RL = 8 + 15H, BW < 30kHz Efficiency Po = 2 WRMS, RL = 4 + 15H Po =1.2 WRMS, RL = 8+ 15H Power Supply Rejection Ratio with inputs grounded 2 f = 217Hz, RL = 8, G=6dB, Vripple = 200mVpp Common Mode Rejection Ratio, f = 217Hz, RL = 8, G = 6dB, Vic = 200mVpp Gain value (Rin in k) Internal Resistance From Standby to GND Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 1.2W, RL = 8 Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4 A weighted RL = 4 Unweighted RL = 8 A weighted RL = 8 Unweighted RL = 4 + 15H A weighted RL = 4 + 15H Unweighted RL = 4 + 30H A weighted RL = 4 + 30H Unweighted RL = 8 + 30H A weighted RL = 8 + 30H Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Parameter Min. Typ. 2.3 10 3 Max. 3.3 1000 25 Unit mA nA mV
Po
2.3 3 1.4 1.75
W
THD + N
1 0.4 78 88 63 57 273 k 300k 327k ----------------- ----------------- ----------------R R R in in in 273 180 300 250 85 5 5 85 60 86 62 83 60 88 64 78 57 87 65 82 59 90 66 327 320 10 10
%
Efficiency
%
PSRR CMRR Gain RSTDBY FPWM SNR TWU TSTB
dB dB V/V k kHz dB ms ms
VN
VRMS
1) 2)
Standby mode is active when Vstdby is tied to GND. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
4/22
Electrical Characteristics
Table 4. VCC = +4.2V, GND = 0V, VICM = 2.1V, Tamb = 25C (unless otherwise specified) 1
Symbol ICC ISTANDBY Voo Supply Current No input signal, no load Standby Current 2 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8 Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4 THD = 10% Max, f = 1kHz, RL = 4 THD = 1% Max, f = 1kHz, RL = 8 THD = 10% Max, f = 1kHz, RL = 8 Total Harmonic Distortion + Noise Po = 600 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8 + 15H, BW < 30kHz Po = 700mWRMS, G = 6dB, f = 1kHz, RL = 8 + 15H, BW < 30kHz Efficiency Po = 1.45 WRMS, RL = 4 + 15H Po = 0.9 WRMS, RL = 8+ 15H Power Supply Rejection Ratio with inputs grounded 3 f = 217Hz, RL = 8, G=6dB, Vripple = 200mVpp Common Mode Rejection Ratio f = 217Hz, RL = 8, G = 6dB, Vic = 200mVpp Gain value (Rin in k) Internal Resistance From Standby to GND Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 0.9W, RL = 8 Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4 A weighted RL = 4 Unweighted RL = 8 A weighted RL = 8 Unweighted RL = 4 + 15H A weighted RL = 4 + 15H Unweighted RL = 4 + 30H A weighted RL = 4 + 30H Unweighted RL = 8 + 30H A weighted RL = 8 + 30H Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Parameter Min. Typ. 2.1 10 3 Max. 3 1000 25
TS4962
Unit mA nA mV
Po
1.6 2 0.95 1.2
W
THD + N
1 0.35 78 88 63 57 300 k 273k ----------------- 327k - --------------------------------R R R in in in 273 180 300 250 85 5 5 85 60 86 62 83 60 88 64 78 57 87 65 82 59 90 66 10 10 327 320
%
Efficiency
%
PSRR CMRR Gain RSTDBY FPWM SNR TWU TSTB
dB dB V/V k kHz dB ms ms
VN
VRMS
1) 2) 3)
All electrical values are guaranted with correlation measurements at 2.5V and 5V. Standby mode is actived when Vstdby is tied to GND. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
5/22
TS4962
Electrical Characteristics
Table 5. VCC = +3.6V, GND = 0V, VICM = 1.8V, Tamb = 25C (unless otherwise specified) 1
Symbol ICC ISTANDBY Voo Supply Current No input signal, no load Standby Current 2 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8 Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4 THD = 10% Max, f = 1kHz, RL = 4 THD = 1% Max, f = 1kHz, RL = 8 THD = 10% Max, f = 1kHz, RL = 8 Total Harmonic Distortion + Noise Po = 500 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8 + 15H, BW < 30kHz Po = 500mWRMS, G = 6dB, f = 1kHz, RL = 8 + 15H, BW < 30kHz Efficiency Po = 1 WRMS, RL = 4 + 15H Po = 0.65 WRMS, RL = 8+ 15H Power Supply Rejection Ratio with inputs grounded 3 f = 217Hz, RL = 8, G=6dB, Vripple = 200mVpp Common Mode Rejection Ratio f = 217Hz, RL = 8, G = 6dB, Vic = 200mVpp Gain value (Rin in k) Internal Resistance From Standby to GND Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 0.6W, RL = 8 Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4 A weighted RL = 4 Unweighted RL = 8 A weighted RL = 8 Unweighted RL = 4 + 15H A weighted RL = 4 + 15H Unweighted RL = 4 + 30H A weighted RL = 4 + 30H Unweighted RL = 8 + 30H A weighted RL = 8 + 30H Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Parameter Min. Typ. 2 10 3 Max. 2.8 1000 25 Unit mA nA mV
Po
1.15 1.51 0.7 0.9
W
THD + N
1 0.27 78 88 62 56 300 k 273k ----------------- 327k - --------------------------------R R R in in in 273 180 300 250 83 5 5 83 57 83 61 81 58 87 62 77 56 85 63 80 57 85 61 10 10 327 320
%
Efficiency
%
PSRR CMRR Gain RSTDBY FPWM SNR TWU TSTB
dB dB V/V k kHz dB ms ms
VN
VRMS
1) 2) 3)
All electrical values are guaranted with correlation measurements at 2.5V and 5V. Standby mode is actived when Vstdby is tied to GND. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
6/22
Electrical Characteristics
Table 6. VCC = +3.0V, GND = 0V, VICM = 1.5V, Tamb = 25C (unless otherwise specified) 1
Symbol ICC ISTANDBY Voo Parameter Supply Current No input signal, no load Standby Current 2 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8 Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4 THD = 10% Max, f = 1kHz, RL = 4 THD = 1% Max, f = 1kHz, RL = 8 THD = 10% Max, f = 1kHz, RL = 8 Total Harmonic Distortion + Noise Po = 350 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8 + 15H, BW < 30kHz Po = 350mWRMS, G = 6dB, f = 1kHz, RL = 8 + 15H, BW < 30kHz Efficiency Po = 0.7 WRMS, RL = 4 + 15H Po = 0.45 WRMS, RL = 8+ 15H Power Supply Rejection Ratio with inputs grounded 3 f = 217Hz, RL = 8, G=6dB, Vripple = 200mVpp Common Mode Rejection Ratio, f = 217Hz, RL = 8, G = 6dB, Vic = 200mVpp Gain value (Rin in k) Internal Resistance From Standby to GND Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 0.4W, RL = 8 Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4 A weighted RL = 4 Unweighted RL = 8 A weighted RL = 8 Unweighted RL = 4 + 15H A weighted RL = 4 + 15H Unweighted RL = 4 + 30H A weighted RL = 4 + 30H Unweighted RL = 8 + 30H A weighted RL = 8 + 30H Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Min. Typ. 1.9 10 3 Max. 2.7 1000 25
TS4962
Unit mA nA mV
Po
0.75 1 0.5 0.6
W
THD + N
1 0.21 78 88 60 54 273k 300 k 327k ----------------- ----------------- ----------------R R R in in in 273 180 300 250 82 5 5 83 57 83 61 81 58 87 62 77 56 85 63 80 57 85 61 10 10 327 320
%
Efficiency
%
PSRR CMRR Gain RSTDBY FPWM SNR TWU TSTB
dB dB V/V k kHz dB ms ms
VN
VRMS
1) All electrical values are guaranted with correlation measurements at 2.5V and 5V. 2) Standby mode is actived when Vstdby is tied to GND. 3) Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
7/22
TS4962
Electrical Characteristics
Table 7. VCC = +2.5V, GND = 0V, VICM = 1.25V, Tamb = 25C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Supply Current No input signal, no load Standby Current 1 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8 Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4 THD = 10% Max, f = 1kHz, RL = 4 THD = 1% Max, f = 1kHz, RL = 8 THD = 10% Max, f = 1kHz, RL = 8 Total Harmonic Distortion + Noise Po = 200 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8 + 15H, BW < 30kHz Po = 200mWRMS, G = 6dB, f = 1kHz, RL = 8 + 15H, BW < 30kHz Efficiency Po = 0.47 WRMS, RL = 4 + 15H Po = 0.3 WRMS, RL = 8+ 15H Power Supply Rejection Ratio with inputs grounded 2 f = 217Hz, RL = 8, G=6dB, Vripple = 200mVpp Common Mode Rejection Ratio f = 217Hz, RL = 8, G = 6dB, Vic = 200mVpp Gain value (Rin in k) Internal Resistance From Standby to GND Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 0.4W, RL = 8 Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4 A weighted RL = 4 Unweighted RL = 8 A weighted RL = 8 Unweighted RL = 4 + 15H A weighted RL = 4 + 15H Unweighted RL = 4 + 30H A weighted RL = 4 + 30H Unweighted RL = 8 + 30H A weighted RL = 8 + 30H Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Parameter Min. Typ. 1.7 10 3 Max. 2.4 1000 25 Unit mA nA mV
Po
0.52 0.71 0.33 0.42
W
THD + N
1 0.19 78 88 60 54 300 k 273k ----------------- 327k - --------------------------------R R R in in in 273 180 300 250 80 5 5 85 60 86 62 76 56 82 60 67 53 78 57 74 54 78 59 10 10 327 320
%
Efficiency
%
PSRR CMRR Gain RSTDBY FPWM SNR TWU TSTB
dB dB V/V k kHz dB ms ms
VN
VRMS
1) 2)
Standby mode is actived when Vstdby is tied to GND. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the surimposed sinus signal to Vcc @ f = 217Hz.
8/22
Electrical Characteristics
Table 8. VCC = +2.4V1, GND = 0V, VICM = 1.2V, Tamb = 25C (unless otherwise specified)
Symbol ICC ISTANDBY Voo Supply Current No input signal, no load Standby Current 2 No input signal, VSTBY = GND Output Offset Voltage No input signal, RL = 8 Output Power, G=6dB THD = 1% Max, f = 1kHz, RL = 4 THD = 10% Max, f = 1kHz, RL = 4 THD = 1% Max, f = 1kHz, RL = 8 THD = 10% Max, f = 1kHz, RL = 8 Total Harmonic Distortion + Noise Po = 200 mWRMS, G = 6dB, 20Hz < f < 20kHz, RL = 8 + 15H, BW < 30kHz Efficiency Po = 0.38 WRMS, RL = 4 + 15H Po = 0.25 WRMS, RL = 8+ 15H Common Mode Rejection Ratio f = 217Hz, RL = 8, G = 6dB, Vic = 200mVpp Gain value (Rin in k) Internal Resistance From Standby to GND Pulse Width Modulator Base Frequency Signal to Noise ratio (A Weighting), Po = 0.25W, RL = 8 Wake-up time Standby time Output Voltage Noise f = 20Hz to 20kHz, G = 6dB Unweighted RL = 4 A weighted RL = 4 Unweighted RL = 8 A weighted RL = 8 Unweighted RL = 4 + 15H A weighted RL = 4 + 15H Unweighted RL = 4 + 30H A weighted RL = 4 + 30H Unweighted RL = 8 + 30H A weighted RL = 8 + 30H Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Unweighted RL = 4 + Filter A weighted RL = 4 + Filter Parameter Min. Typ. 1.7 10 3 Max.
TS4962
Unit mA nA mV
Po
0.48 0.65 0.3 0.38 1
W
THD + N
%
Efficiency
77 86 54 300 k 273k ----------------- 327k - --------------------------------R R R in in in 273 300 250 80 5 5 85 60 86 62 76 56 82 60 67 53 78 57 74 54 78 59 327
%
CMRR Gain RSTDBY FPWM SNR TWU TSTB
dB V/V k kHz dB ms ms
VN
VRMS
1) 2)
Parameters guaranteed by evaluation and design, not by test. Standby mode is actived when Vstdby is tied to GND.
9/22
TS4962
Electrical Characteristics
Note:In the graphs that follow, the following abbreviations are used:
RL + 15H or 30H = pure resistor+ very low series resistance inductor Filter = LC output filter (1F+30H for 4 and 0.5F+60H for 8) All measurements done with Cs1=1F and Cs2=100nF except for PSRR where Cs1 is removed
Figure 2.
Test diagram for measurements
Vcc 1uF Cs1 + 100nF Cs2
Cin
GND Rin
GND In+ Out+ 15uH or 30uH TS4962 or LC Filter Out4 or 8 Ohms 5th order RL 50kHz low pass filter
150k Cin
Rin 150k
In-
GND Audio Measurement Bandwidth < 30kHz
Figure 3.
Test diagram for PSRR measurements
100nF Cs2 20Hz to 20kHz Vcc
GND 4.7uF GND Rin In+ 150k TS4962 4.7uF Rin 150k GND GND 5th order 50kHz low pass filter Reference RMS Selective Measurement Bandwidth=1% of Fmeas InOutOut+ 15uH or 30uH or LC Filter 4 or 8 Ohms 5th order RL 50kHz low pass filter
10/22
Electrical Characteristics
Figure 4. Current consumption vs power supply voltage Figure 7.
TS4962
Output offset voltage vs common mode input voltage
2.5 No load Tamb=25C
Current Consumption (mA)
10 G = 6dB Tamb = 25C 8
2.0
1.5
Voo (mV)
6
Vcc=5V Vcc=3.6V
1.0
4
0.5
2
Vcc=2.5V
0.0
0
1
2
3
4
5
0 0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Power Supply Voltage (V)
Common Mode Input Voltage (V)
Figure 5.
Current consumption vs standby voltage
Figure 8.
Efficiency vs output power
2.5
100 600 Efficiency 500 400 300 40 200 Vcc=5V RL=4 + 15H 100 F=1kHz THD+N1% 0 1.0 1.5 2.0 2.3 Output Power (W) Power Dissipation
Power Dissipation (mW)
Current Consumption (mA)
2.0
Efficiency (%)
80
1.5
60
1.0
0.5
Vcc = 5V No load Tamb=25C 0 1 2 3 4 5
20
0.0
0 0.0
0.5
Standby Voltage (V)
Figure 6.
Current consumption vs standby voltage
Figure 9.
Efficiency vs output power
2.0
100 Efficiency
200
Current Consumption (mA)
1.5
150
60 100 40 Power Dissipation Vcc=3V 50 RL=4 + 15H F=1kHz THD+N1% 0 0.2 0.3 0.4 0.5 0.6 0.7 Output Power (W)
1.0
0.5 Vcc = 3V No load Tamb=25C 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
20
0 0.0
0.1
Standby Voltage (V)
11/22
Power Dissipation (mW)
80
Efficiency (%)
TS4962
Figure 10. Efficiency vs output power
Electrical Characteristics
Figure 13. Output power vs power supply voltage
150
100
2.0
Power Dissipation (mW)
80 Efficiency
Efficiency (%)
RL = 8 + 15H F = 1kHz BW < 30kHz 1.5 Tamb = 25C
Output power (W)
60
100
THD+N=10% 1.0
40
Power Dissipation Vcc=5V RL=8 + 15H F=1kHz THD+N1% 0.2 0.4 0.6 0.8 Output Power (W) 1.0 1.2
50
20
0.5
THD+N=1%
0 0.0
0 1.4
0.0
2.5
3.0
3.5
4.0 Vcc (V)
4.5
5.0
5.5
Figure 11. Efficiency vs output power
100 75
Figure 14. PSRR vs frequency
0 -10
Power Dissipation (mW)
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7F RL = 4 + 15H R/R0.1% Tamb = 25C
80 Efficiency
Efficiency (%)
-20
PSRR (dB)
50 60
-30 -40
Vcc=5V, 3.6V, 2.5V
40 Power Dissipation 25 Vcc=3V RL=8 + 15H F=1kHz THD+N1% 0.4 0 0.5
-50 -60 -70 -80 20 100 1000 Frequency (Hz) 10000 20k
20
0 0.0
0.1
0.2 0.3 Output Power (W)
Figure 12. Output power vs power supply voltage
3.5 RL = 4 + 15H F = 1kHz 3.0 BW < 30kHz Tamb = 25C 2.5 2.0 1.5 THD+N=1% 1.0
Figure 15. PSRR vs frequency
0
THD+N=10%
-10 -20
PSRR (dB)
Output power (W)
-30 -40
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7F RL = 4 + 30H R/R0.1% Tamb = 25C
Vcc=5V, 3.6V, 2.5V
-50 -60
0.5 0.0
-70
2.5 3.0 3.5 4.0 Vcc (V) 4.5 5.0 5.5
-80
20
100
1000 Frequency (Hz)
10000 20k
12/22
Electrical Characteristics
Figure 16. PSRR vs frequency
0 -10 -20
PSRR (dB)
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7F RL = 4 + Filter R/R0.1% Tamb = 25C
TS4962
Figure 19. PSRR vs frequency
0 -10 -20
PSRR (dB)
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7F R/R0.1% RL = 8 + Filter Tamb = 25C
-30 -40
-30 -40 -50 -60 -70
Vcc=5V, 3.6V, 2.5V
-50 -60 -70 -80 20 100 1000 Frequency (Hz) 10000 20k
Vcc=5V, 3.6V, 2.5V
-80
20
100
1000 Frequency (Hz)
10000 20k
Figure 17. PSRR vs frequency
Figure 20. PSRR vs frequency Common Mode Input Voltage
0
0 -10 -20
PSRR (dB)
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7F RL = 8 + 15H R/R0.1% Tamb = 25C
-10 -20
PSRR(dB)
Vripple = 200mVpp F = 217Hz, G = 6dB RL 4 + 15H Tamb = 25C
Vcc=2.5V
-30 -40 -50 -60 -70 -80 20
-30 -40 -50 -60 -70 Vcc=5V Vcc=3.6V
Vcc=5V, 3.6V, 2.5V
100
1000 Frequency (Hz)
10000 20k
-80 0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Common Mode Input Voltage (V)
Figure 18. PSRR vs frequency
0 -10 -20
PSRR (dB)
Vripple = 200mVpp Inputs = Grounded G = 6dB, Cin = 4.7F RL = 8 + 30H R/R0.1% Tamb = 25C
Figure 21. CMRR vs frequency
0 RL=4 + 15H G=6dB Vicm=200mVpp R/R0.1% Cin=4.7F Tamb = 25C Vcc=5V, 3.6V, 2.5V
-20
CMRR (dB)
-30 -40 -50 -60 -70 -80 20
Vcc=5V, 3.6V, 2.5V
-40
-60
100
1000 Frequency (Hz)
10000 20k
20
100
1000 Frequency (Hz)
10000 20k
13/22
TS4962
Figure 22. CMRR vs frequency
0 RL=4 + 30H G=6dB Vicm=200mVpp R/R0.1% Cin=4.7F Tamb = 25C
Electrical Characteristics
Figure 25. CMRR vs frequency
0 RL=8 + 30H G=6dB Vicm=200mVpp R/R0.1% Cin=4.7F Tamb = 25C
-20
CMRR (dB)
-20
CMRR (dB)
-40 Vcc=5V, 3.6V, 2.5V
-40 Vcc=5V, 3.6V, 2.5V
-60
-60
20
100
1000 Frequency (Hz)
10000 20k
20
100
1000 Frequency (Hz)
10000 20k
Figure 23. CMRR vs frequency
0 RL=4 + Filter G=6dB Vicm=200mVpp R/R0.1% Cin=4.7F Tamb = 25C
Figure 26. CMRR vs frequency
0 RL=8 + Filter G=6dB Vicm=200mVpp R/R0.1% Cin=4.7F Tamb = 25C
-20
CMRR (dB)
-20
CMRR (dB)
-40 Vcc=5V, 3.6V, 2.5V
-40 Vcc=5V, 3.6V, 2.5V
-60
-60
20
100
1000 Frequency (Hz)
10000 20k
20
100
1000 Frequency (Hz)
10000 20k
Figure 24. CMRR vs frequency
0 RL=8 + 15H G=6dB Vicm=200mVpp R/R0.1% Cin=4.7F Tamb = 25C
Figure 27. CMRR vs frequency Common Mode Input Voltage
-20
Vicm = 200mVpp F = 217Hz G = 6dB RL 4 + 15H Tamb = 25C
-20
CMRR (dB)
-30
CMRR(dB)
Vcc=2.5V
-40
-40 Vcc=5V, 3.6V, 2.5V
-50
Vcc=3.6V
-60
-60 Vcc=5V
20
100
1000 Frequency (Hz)
10000 20k
-70 0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Common Mode Input Voltage (V)
14/22
Electrical Characteristics
Figure 28. THD+N vs output power
10 RL = 4 + 15H F = 100Hz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V
TS4962
Figure 31. THD+N vs output power
10 RL = 8 + 30H or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V Vcc=2.5V
THD + N (%)
0.1
1E-3
0.01 0.1 Output Power (W)
1
THD + N (%)
Vcc=2.5V
0.1
3
1E-3
0.01 0.1 Output Power (W)
1
2
Figure 29. THD+N vs output power
10 RL = 4 + 30H or Filter F = 100Hz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V
Figure 32. THD+N vs output power
10 RL = 4 + 15H F = 1kHz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V Vcc=2.5V
THD + N (%)
0.1 0.1 1E-3
1E-3
0.01 0.1 Output Power (W)
1
THD + N (%)
Vcc=2.5V
3
0.01 0.1 Output Power (W)
1
3
Figure 30. THD+N vs output power
10 RL = 8 + 15H F = 100Hz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V Vcc=2.5V
Figure 33. THD+N vs output power
10 RL = 4 + 30H or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V Vcc=2.5V
THD + N (%)
0.1 0.1 1E-3
1E-3
0.01 0.1 Output Power (W)
1
2
THD + N (%)
0.01 0.1 Output Power (W)
1
3
15/22
TS4962
Figure 34. THD+N vs output power
10 RL = 8 + 15H F = 1kHz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V Vcc=2.5V
Electrical Characteristics
Figure 37. THD+N vs frequency
10 RL=4 + 30H or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25C 1
THD + N (%)
Po=1.5W
THD + N (%)
0.1
0.1 1E-3
Po=0.75W
0.01 0.1 Output Power (W)
1
2
50
100
1000 Frequency (Hz)
10000 20k
Figure 35. THD+N vs output power
10 RL = 8 + 30H or Filter F = 1kHz G = 6dB BW < 30kHz Tamb = 25C 1
Vcc=5V Vcc=3.6V Vcc=2.5V
Figure 38. THD+N vs frequency
10 RL=4 + 15H G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25C 1
Po=0.9W
THD + N (%)
THD + N (%)
Po=0.45W
0.1
0.1 1E-3
0.01 0.1 Output Power (W)
1
2
50
100
1000 Frequency (Hz)
10000 20k
Figure 36. THD+N vs frequency
10 RL=4 + 15H G=6dB Bw < 30kHz Vcc=5V Tamb = 25C 1
Figure 39. THD+N vs frequency
10 RL=4 + 30H or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25C 1
Po=0.9W
Po=1.5W
THD + N (%)
THD + N (%)
Po=0.45W
0.1
Po=0.75W
0.1
50
100
1000 Frequency (Hz)
10000 20k
50
100
1000 Frequency (Hz)
10000 20k
16/22
Electrical Characteristics
Figure 40. THD+N vs frequency
10 RL=4 + 15H G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25C 1
TS4962
Figure 43. THD+N vs frequency
10 RL=8 + 30H or Filter G=6dB Bw < 30kHz Vcc=5V Tamb = 25C 1
Po=0.4W
THD + N (%)
Po=0.2W
THD + N (%)
Po=0.9W
0.1
0.1 200 1000 Frequency (Hz) 10000 20k
Po=0.45W
50
100
1000 Frequency (Hz)
10000 20k
Figure 41. THD+N vs frequency
10 RL=4 + 30H or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25C 1
Figure 44. THD+N vs frequency
10 RL=8 + 15H G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25C 1
Po=0.4W
THD + N (%)
Po=0.2W
0.1
THD + N (%)
Po=0.5W
0.1 50 100 1000 Frequency (Hz) 10000 20k
Po=0.25W
50
100
1000 Frequency (Hz)
10000 20k
Figure 42. THD+N vs frequency
10 RL=8 + 15H G=6dB Bw < 30kHz Vcc=5V Tamb = 25C 1
Figure 45. THD+N vs frequency
10 RL=8 + 30H or Filter G=6dB Bw < 30kHz Vcc=3.6V Tamb = 25C 1
Po=0.5W
THD + N (%)
0.1
Po=0.45W
THD + N (%)
Po=0.9W
0.1
Po=0.25W
50
100
1000 Frequency (Hz)
10000 20k
50
100
1000 Frequency (Hz)
10000 20k
17/22
TS4962
Figure 46. THD+N vs frequency
10 RL=8 + 15H G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25C
Electrical Characteristics
Figure 49. Gain vs frequency
8
1
THD + N (%)
Po=0.2W
Differential Gain (dB)
6
4
Vcc=5V, 3.6V, 2.5V
0.1
2
Po=0.1W
RL=4 + 30H G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
0.01
0 50 100 1000 Frequency (Hz) 10000 20k
Figure 47. THD+N vs frequency
10 RL=8 + 30H or Filter G=6dB Bw < 30kHz Vcc=2.5V Tamb = 25C
Figure 50. Gain vs frequency
8
Po=0.2W
1
THD + N (%)
Differential Gain (dB)
6
4
Vcc=5V, 3.6V, 2.5V
0.1
2
Po=0.1W
RL=4 + Filter G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
0.01
0 50 100 1000 Frequency (Hz) 10000 20k
Figure 48. Gain vs frequency
8
Figure 51. Gain vs frequency
8
Differential Gain (dB)
Differential Gain (dB)
6
6 Vcc=5V, 3.6V, 2.5V 4 RL=8 + 15H G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
4
Vcc=5V, 3.6V, 2.5V
2
RL=4 + 15H G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
2
0
0
18/22
Electrical Characteristics
Figure 52. Gain vs frequency
8
Vo1
TS4962
Figure 55. Startup & shutdown time Vcc=5V, G=6dB, CIN=1F (5ms/div)
Differential Gain (dB)
6
Vo2
Vcc=5V, 3.6V, 2.5V 4
Standby
2
RL=8 + 30H G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
Vo1-Vo2
0
Figure 53. Gain vs frequency
8
Figure 56. Startup & shutdown time Vcc=3V, G=6dB, CIN=1F (5ms/div)
Vo1
Differential Gain (dB)
6
Vo2
Vcc=5V, 3.6V, 2.5V 4
Standby
2
RL=8 + Filter G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
Vo1-Vo2
0
Figure 54. Gain vs frequency
Figure 57. Startup & shutdown time Vcc=5V, G=6dB, CIN=100nF (5ms/div)
8
Vo1
Differential Gain (dB)
6 Vcc=5V, 3.6V, 2.5V 4 RL=No Load G=6dB Vin=500mVpp Cin=1F Tamb = 25C 20 100 1000 Frequency (Hz) 10000 20k
Vo2
Standby
2
Vo1-Vo2
0
19/22
TS4962
Figure 58. Startup & shutdown time Vcc=3V, G=6dB, CIN=100nF (5ms/div)
Electrical Characteristics
Vo1
Vo2
Standby
Vo1-Vo2
Figure 59. Startup & shutdown time Vcc=5V, G=6dB, NoCIN (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
Figure 60. Startup & shutdown time Vcc=3V, G=6dB, NoCIN (5ms/div)
Vo1
Vo2
Standby
Vo1-Vo2
20/22
Package Mechanical Data
TS4962
4 Package Mechanical Data
4.1 Pin-out and markings for 9-bump flip-chip
Figure 61. Pin-out for 9-bump flip-chip (top view)
IN+ 1/A1 VDD 4/B1 IN7/C1
GND 2/A2 VDD 5/B2 STBY 8/C2
OUT3/A3 GND 6/B3 OUT+ 9/C3

Bumps are underneath Bump diameter = 300m
Figure 62. Marking for 9-bump flip-chip (top view) Marking: A62
E
A62 YWW

ST Logo Part Number: A62 Three digits Datecode: YWW E symbol for lead-free only The dot is for marking pin A1
4.2 Mechanical data for 9-bump flip-chip
1.60 mm
1.60 mm
0.5mm

Die size: 1.6mm x 1.6mm 30m Die height (including bumps): 600m Bump diameter: 315m 50m Bump diameter before Reflew: 300m 10m Bump height: 250m 40m Die Height: 350m 20m Pitch: 500m 50m *Back Coating layer Height: 100m 10m Coplanarity: 60m max * Optional
0.5mm
0.25mm
100m 600m
21/22
TS4962
Revision History
5 Revision History
Date 01 Sept. 2004 01 Oct. 2004 01 Nov. 2004 01 Jan. 2005 Revision 0.1 0.2 1 2 Description of Changes First release corresponding to Target Specification version of datasheet. Update Gain Values. First published version corresponding to Preliminary Data version of datasheet. Specific content changes as follows: * update Electrical Values + curves.
Technical parameter updated (Output Power at 3W).
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners (c) 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
22/22


▲Up To Search▲   

 
Price & Availability of TS4962IJT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X